top of page

Enhancing Oil Recovery

Enhanced oil recovery (abbreviated EOR), also called tertiary recovery, is the extraction of crude oil from an oil field that cannot be extracted otherwise. EOR can extract 30% to 60% or more of a reservoir's oil,[1] compared to 20% to 40% using primary and secondary recovery. According to the US Department of Energy, carbon dioxide and water are injected along with one of three EOR techniques: thermal injection, gas injection, and chemical injection.[1] More advanced, speculative EOR techniques are sometimes called quaternary recovery

There are three primary techniques of EOR: gas injection, thermal injection, and chemical injection. Gas injection, which uses gases such as natural gasnitrogen, or carbon dioxide (CO2), accounts for nearly 60 percent of EOR production in the United States.[1] Thermal injection, which involves the introduction of heat, accounts for 40 percent of EOR production in the United States, with most of it occurring in California. Chemical injection, which can involve the use of long-chained molecules called polymers to increase the effectiveness of waterfloods, accounts for about one percent of EOR production in the United States.[1] In 2013, a technique called Plasma-Pulse technology was introduced into the United States from Russia. This technique can result in another 50 percent of improvement in existing well production.

Gas injection

Gas injection or miscible flooding is presently the most-commonly used approach in enhanced oil recovery. Miscible flooding is a general term for injection processes that introduce miscible gases into the reservoir. A miscible displacement process maintains reservoir pressure and improves oil displacement because the interfacial tension between oil and gas is reduced. This refers to removing the interface between the two interacting fluids. This allows for total displacement efficiency. Gases used include CO2, natural gas or nitrogen. The fluid most commonly used for miscible displacement is carbon dioxide because it reduces the oil viscosity and is less expensive than liquefied petroleum gas. Oil displacement by carbon dioxide injection relies on the phase behavior of the mixtures of that gas and the crude, which are strongly dependent on reservoir temperature, pressure and crude oil composition.

Thermal injection

Steam injection (oil industry)

The steam flooding technique

In this approach, various methods are used to heat the crude oil in the formation to reduce its viscosity and/or vaporize part of the oil and thus decrease the mobility ratio. The increased heat reduces the surface tension and increases the permeability of the oil. The heated oil may also vaporize and then condense forming improved oil. Methods include cyclic steam injection, steam flooding and combustion. These methods improve the sweep efficiency and the displacement efficiency. Steam injection has been used commercially since the 1960s in California fields. In 2011 solar thermal enhanced oil recovery projects were started in California and Oman, this method is similar to thermal EOR but uses a solar array to produce the steam.

Steam flooding

Steam flooding (see sketch) is one means of introducing heat to the reservoir by pumping steam into the well with a pattern similar to that of water injection. Eventually the steam condenses to hot water; in the steam zone the oil evaporates, and in the hot water zone the oil expands. As a result, the oil expands, the viscosity drops, and the permeability increases. To ensure success the process has to be cyclical. This is the principal enhanced oil recovery program in use today.

Fire flooding

Fire flooding works best when the oil saturation and porosity are high. Combustion generates the heat within the reservoir itself. Continuous injection of air or other gas mixture with high oxygen content will maintain the flame front. As the fire burns, it moves through the reservoir toward production wells. Heat from the fire reduces oil viscosity and helps vaporize reservoir water to steam. The steam, hot water, combustion gas and a bank of distilled solvent all act to drive oil in front of the fire toward production wells.

There are three methods of combustion: Dry forward, reverse and wet combustion. Dry forward uses an igniter to set fire to the oil. As the fire progresses the oil is pushed away from the fire toward the producing well. In reverse the air injection and the ignition occur from opposite directions. In wet combustion water is injected just behind the front and turned into steam by the hot rock. This quenches the fire and spreads the heat more evenly.

Chemical injection

The injection of various chemicals, usually as dilute solutions, have been used to aid mobility and the reduction in surface tension. Injection of alkaline or caustic solutions into reservoirs with oil that have organic acids naturally occurring in the oil will result in the production of soap that may lower the interfacial tension enough to increase production. Injection of a dilute solution of a water-soluble polymer to increase the viscosity of the injected water can increase the amount of oil recovered in some formations. Dilute solutions of surfactants such as petroleum sulfonates or biosurfactants such as rhamnolipids may be injected to lower the interfacial tension or capillary pressure that impedes oil droplets from moving through a reservoir, this is analyzed in terms of the bond number, relating capillary forces to gravitational ones. Special formulations of oil, water and surfactant, microemulsions, can be particularly effective in reducing interfacial tension. Application of these methods is usually limited by the cost of the chemicals and their adsorption and loss onto the rock of the oil containing formation. In all of these methods the chemicals are injected into several wells and the production occurs in other nearby wells.

Polymer flooding

Polymer flooding consists in mixing long chain polymer molecules with the injected water in order to increase the water viscosity. This method improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio.

Surfactants may be used in conjunction with polymers; they decrease the surface tension between the oil and water. This reduces the residual oil saturation and improves the macroscopic efficiency of the process.

Primary surfactants usually have co-surfactants, activity boosters, and co-solvents added to them to improve stability of the formulation.

Caustic flooding is the addition of sodium hydroxide to injection water. It does this by lowering the surface tension, reversing the rock wettability, emulsification of the oil, mobilization of the oil and helps in drawing the oil out of the rock.

Enhancing Oil Recovery: Text
bottom of page